Given, ∠BAM=70∘.
We know that, in rhombus, diagonals bisect each other at right angles.
∴∠BOM=∠BOE=∠AOM=∠AOE=90∘.
Now, in ΔAOM.
∠AOM+∠AMO+∠OAM=180∘ . [angle sum property of triangle]
⇒90∘+∠AMO+70∘=180∘⇒∠AMO=180∘−90∘−70∘⇒∠AMO=20∘
Also, AM = BM = BE = EA.
In ΔAME, we have,
AM = EA
∴∠AME=∠AEM=20∘ [∵ equal sides make equal angles]