In right triangle ABC, right-angled at B, if tanA=1, then verify that 2sinAcosA=1.
Open in App
Solution
In △ABC, ∠ABC=90o∴tanA=BCAB Since tanA=1 (Given) BCAB=1∴BC=AB Let AB=BC=k, where k is a positive number. Now, AC2=AB2+BC2∴AC=√AB2+BC2=√k2+k2 ∴AC=k√2 ∴sinA=BCAC=kk√2=1√2,cosA=ABAC=kk√2=1√2 2sinAcosA=2(1√2)(1√2)=1 ∴2sinAcosA=1