Any Point Equidistant from the End Points of a Segment Lies on the Perpendicular Bisector of the Segment
In t Δ ABC, ...
Question
In tΔ ABC, AB > AC. E is the mid-point of BC and AD is perpendicular to BC. Then, Answer: AB2+AC2=2AE2+2BE2 State whether the above statement is true=1 or false=0.
Open in App
Solution
Given: △ABC, AD⊥BC, BE=CE In △ABD AD2=AB2−BD2 (Pythagoras theorem) (I) In △ACD AD2=AC2−CD2 (Pythagoras theorem) (II) Adding I and II 2AD2=AB2+AC2−BD2−CD2 2AD2=AB2+AC2−(BE+ED)2−(CE−ED)2 2AD2=AB2+AC2−BE2−ED2−2BE.ED−CE2−ED2+2CE.ED 2AD2=AB2+AC2−2BE2−2ED2 (BE = CE) 2(AD2+BE2+DE2)=AB2+AC2 2(AE2+BE2)=AB2+AC2 (Pythagoras Theorem in △AED)