In th figure , AC ⊥CE and ∠A:∠B:∠C=3:2:1, find value of
∠ECD.
In ΔABC, ∠A:∠B:∠C =3:2:1
BC is produced to D and CE ⊥ AC
∴∠A+∠B+∠C=180∘ (Sum of angles of a triangles)
Let ∠A=3x, then ∠B=2x and ∠C=x
∴3x+2x+x=180∘⇒6x=180∘
⇒x=180∘6=30∘
∴∠A=3x=3×30∘=90∘
∠B=2x=2×30∘=60∘
∠C=x=30∘
In ΔABC,
Ext. ∠ACD=∠A+∠B
⇒90∘+∠ECD=90∘+60∘=150∘
∴∠ECD=150∘−90∘=60∘