wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the above figure given of ABC,ACB=90
D is the midpoint of BC
Prove that AB2= 4AD23AC2

1138875_2e3896eb30604e5590f7edeaebf9c834.png

Open in App
Solution

In ABC,C=90
BD=CD=BC2
By Pythagoras Theorem,
(Hypotenuse)2=(Base)2+(Height)2
In ABC;AB2=BC2+AC2...(1)
In ADC;AD2=AC2+DC2...(2)
From (1) AB2=BC2+AC2
AB2=(2CD)2+AC2 (BC=2CD)
AB2AC2=4CD2
CD2=AB2AC24...(3)
Substituting CD2 value from (3) in (2)
AD2=AC2+(AB2AC24)
4AD2=4AC2+AB2AC2
4AD24AC2+AC2=AB2
AB2=4AD23AC2
Hence proved

1110418_1138875_ans_b2c9ebacac054742950dc93b99d67def.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangle Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon