In the adjoining figure, AB=AC=CD, ∠ADC=35o. Then (i) ∠ABC, (ii) ∠BEC are respectively:
A
110o&70o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
350o&1100o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
50o&35o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
70o&40o.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B70o&40o. Given−ABCEisacyclicquadrilateral.AE&BCareproducedtomeetatD.AC&EBarejoined.AB=AC=CDand∠ADC=35o.Tofindout−(i)∠ABC=?(ii)∠BEC=?Solution−InΔACD,AC=CD⟹ΔACDisisosceleswithADasbase.So∠CAD=∠CDA=35o.i.e∠CAD+∠CDA=2∠CAD=2×35o=70o.∴∠ACD=180o−2∠CAD=180o−70o=110o.(anglesumpropetyoftriangles).∴∠ACB=180o−∠ACD=180o−110o=70o.(linearpair)NowAC=AB⟹ΔABCisisosceleswithBCasbase.So∠ABC=∠ACB=70o.i.e∠ABC+∠ACB=2∠ABC=2×70o=140o.∴∠BAC=180o−2∠ABC=180o−140o=40o.(anglesumpropetyoftriangles).Now∠BAC&∠BEChavebeensubtendedbythechordBCtothecircumferenceofthecircleatA&E.∴∠BAC=∠BEC=40o.So,∠ABCand∠BECarerespectively,70o&40o.Hence,optionDiscorrect.