In the adjoining figure ABC is a right angled at A . Find the area of the shaded region if AB=6 cm and BC=10 cm and I is the centre of in circle of △ ABC
Open in App
Solution
Applying pythagoras theorem in Δ ABC, we have BC2=AB2+AC2 ⇒AC2=BC2−AB2 ⇒AC2 = 100−36=64 ⇒AC=8cm
∴ Area of Δ ABC = 12×AB×AC
⇒ Area of Δ ABC = 12×6×8cm2=24cm2
Let r cm be the incircle. Clearly, Area of Δ ABC = Area of Δ IBC + Area of Δ ICA + Area of Δ IAB
⇒ 24 = 12(BC×r)+12(CA×r)+12(AB×r)
⇒ 24 = 12r×(BC+CA+AB)
⇒ 24 = 12×r×(10+8+6)
⇒24=12r
⇒r=2
∴ Area of the shaded region = Area of Δ ABC - Area of the incircle
⇒ Area of the shaded region = 24 - πr2=(24−227×4)cm2=807cm2