In the adjoining figure, ABCD is a parallelogram. P is a point on BC such that BP:PC=1:2. DP produced meets AB produced at Q. Given ar(ΔCPQ)=20cm2. Calculate ar(ΔCDP).
Open in App
Solution
For △BPQ and △DCP
∠BPQ=∠DPC∵ofverticallyoppositeangles
∠BQP=∠PDC∵ofalternateangles
∴△BPQ∼△DCP
∴BQDC=QPPD=BPPC
Given:BP:PC=1:2
⇒BPPC=12
∴QPPD=12
For △CPQ and △CDQ are on the same base at vertex C