wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the adjoining figure, ABCD is a square. BCE on side BC and ACF on the diagonal AC are similar to each other. Show thatA(BCE)=12A(ACF).

Open in App
Solution

Given: ABCD is a square. AC=2 BC ...(1) [ Diagonal of a square =2 ×side of the square ]BCE~ACF [Given ]A(BCE)A(ACF)=BC2AC2 ...(2) A(BCE)A(ACF)=BC22BC2 [From (1) &(2)]A(BCE)A(ACF)=BC22BC2A(BCE)A(ACF)=12 A(BCE)=12 A(ACF) Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythogoras Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon