Given: ΔABC,AD bisects ∠A,
In ΔABC,
Sum of angles =180o
∠A+∠B+∠C=180o
∠A+60o+40o=180o
∠A=80o
∠BAD=∠DAC=40o
∠A=80o,∠C=40o
Since, ∠A>∠C
BC>AB (Sides opposite greater angles is greater ) .. (i)
In ΔADC
∠ACD=∠DAC=40o
Thus, AD=DC (Isosceles triangle property)
Now, In ΔABD
Sum of angles =180o
∠ABD+∠ADB+∠BAD=180o
60+∠ADB+40o=180o
∠ADB=80o
∠ABD=60o and ΔADB=80o
Since, ∠ABD>∠ADB
Thus, AD>AB
or DC>AB (Since ,AD=DC) ... (ii)
and we know BC=BD+DC
Hence, BC>DC ... (iii)
Hence, from (i), (ii) and (iii)
BC>DC>AB