In ABE=AB2+BE2=AE2 (image)
AB2+25=169
AB2=169−25=144
AB=12
In DBC,DC2=DB2+BC2
⇒169=(AB−x)2+(5+x)2
169=AB2+x2−2xAB×x+25+x2+10X
=196=144+x2−24x+25+x2+10x
⇒2x2−14x=0
⇒x(x−7)=0⇒x=7
[x=7]
In the given figure AB∥EF∥DC; AB = 67.5 cm. DC = 40.5 cm and AE = 52.5 cm. Find the length of EC.
D and E are points on the sides AB and AC respectively of a ΔABC such that DE || BC Find the value of x, when
(i) AD = x cm, DB = (x - 2) cm,
AE = (x + 2) cm and EC = (x - 1) cm.
(ii) AD = 4 cm, DB = (x - 4) cm, AE = 8 cm and EC = (3x - 19) cm.
(iii) AD = (7x - 4) cm, AE = (5x - 2) cm, DB = (3x + 4 ) cm and EC = 3x cm.