In the adjoining figure, DE is a chord parallel to diameter AC of the circle with centre O. If ∠CBD=60∘,calculate ∠CDE.
Angles in the same segment of a circle are equal.
i.e., ∠CAD=∠CBD=60∘
We know that an angle in a semicircle is a right angle.
i.e.,∠ADC=90∘
In △ADC, we have:
∠ACD+∠ADC+∠CAD=180∘ (Angle sum property of a triangle)
⇒∠ACD+90∘+60∘=180∘
⇒∠ACD=180∘–(90∘+60∘)=180∘–150∘=30∘
⇒∠CDE=∠ACD=30∘ (Alternate angles as AC parallel to DE)
Hence,∠CDE=30∘