In the adjoining figure, if BC=a, AC=b, AB=c and ∠CAB=120∘, then the correct relation is
a2 = b2 + c2 + bc
In △BDC,
BC2=BD2+CD2
As, BD=AB+AD, upon simplification, we can write
BC2=(AB+AD)2+CD2
BC2=AB2+AD2+2AB.AD+CD2
⇒BC2=AB2+AC2+2AB.AD [∵in△ADC,AD2+CD2=AC2]
⇒BC2=AB2+AC2+2AB.12AC [∵∠CAD=180−120=60∘andAD=ACcos60∘=12AC]
⇒BC2=AB2+AC2+AB.AC
⇒a2=b2+c2+bc