In the adjoining figure, if BC=a,AC=b,AB=c and ∠CAB=120∘,
then which of the following is the correct relation?
a2 = b2 + c2 + bc
In △CDB,
BC2=CD2+BD2 [Pythagoras theorem]
BC2=CD2+(DA+AB)2
BC2=CD2+DA2+AB2+(2×DA×AB) ...(i)
In △ADC,
CD2+DA2=AC2 ...(ii) [Pythagoras Theorem]
Here, ∠CAB=120∘ (given)
⇒∠CAD=60∘ (since ∠CAD and ∠CAB form a linear pair of angles)
Also, cos60∘=ADAC
AC=2AD ...(iii)
Substituting the values from (ii) & (iii) in (i) we get,
BC2=AC2+AB2+(AC×AB)
a2=b2+c2+bc
Alternatively,
Since ∠A is an obtuse angle in △ABC so,
BC2=AB2+AC2+2AB.AD =AB2+AC2+2×AB×12×AC [∵AD=ACcos60∘=12AC] =AB2+AC2+AB×AC
⇒a2=b2+c2+bc