In the adjoining figure, if BC=a units, AC=b units, AB=c units and ∠CAB=120∘, then prove that a2 = b2 + c2 + bc.
In △CDB,
BC2=CD2+BD2 [Pythagoras theorem]
BC2=CD2+(DA+AB)2
BC2=CD2+DA2+AB2+(2×DA×AB) ...(i)
In △ADC,
CD2+DA2=AC2 ...(ii) [Pythagoras Theorem]
Here, ∠CAB=120∘ (given)
⇒∠CAD=60∘ (since ∠CAD and ∠CAB form a linear pair of angles)
Also, cos60∘=ADAC
AC=2AD ...(iii)
Substituting the values from (ii) & (iii) in (i) we get,
BC2=AC2+AB2+(AC×AB)
a2=b2+c2+bc