wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the adjoining figure, O is the centre of a circle. Chord CD is parallel to diameter AB. If ABC=25, calculate CED.

Open in App
Solution


∠BCD = ∠ABC = 25° (Alternate angles)
Join CO and DO.
We know that the angle subtended by an arc of a circle at the centre is double the angle subtended by an arc at any point on the circumference.
Thus, ∠BOD = 2∠BCD
⇒∠BOD = 2 × 25° = 50°
Similarly, ∠AOC = 2∠ABC
⇒ ∠AOC = 2 × 25° = 50°
AB is a straight line passing through the centre.
i.e., ∠AOC + ∠COD + ∠BOD = 180°
⇒ 50° + ∠COD + 50° = 180°
⇒ ∠COD = (180° – 100°) = 80°
⇒∠CED=12​​​​​​​∠COD
⇒∠CED=(12×80°)=40°
∴ ∠CED = 40°


flag
Suggest Corrections
thumbs-up
78
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 8
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon