In the adjoining figure, O is the centre of the circle and AB is a tangent to it at point B. ∠ BDC = 65o. Find ∠ BAO.
AB is a straight line.
∠ADE+∠BDE=1800
∠ADE+650=1800
∠ADE=1150......(i)
AB i.e. DB is tangent to the circle at point B and BC is the diameter.
∠DBO=900
In △BDC,∠DBC+∠BDC+∠DCB=1800900+650+∠DCB=1800
∠DCB=250
Now,OE=OC (radii of the same circle)
∠DCB or ∠OCE=∠OEC=250
∠OEC=∠DEA=250.....(ii) (vertically opposite angles)
In triangle ADE ,
∠ADE+∠DEA+ ∠DAE =180
from (i) and (ii),
1150+250+∠DAE=1800∠DAE=∠BAO=400