In the adjoining figure, O is the centre of the circle and PQ, RS are its equal chords, OD ⊥ PQ and OE ⊥ RS. If ∠DOE=130∘, then ∠PDE = ___.
65∘
Since equal chords are equidistant from the centre, we have OD = OE.
⟹∠ODE=∠OED=x (say)
∴x+x+130=180∘ (Angle sum property)
⟹2x=50⟹x=25∘
i.e., ∠ODE=25∘
OD⊥PQ⟹∠PDO=90∘
∴∠PDE=∠PDO−∠ODE=90∘−25∘=65∘
Thus, ∠PDE=65∘.