In the adjoining figure, O is the centre of the circle and PQ, RS are its equal chords, OD⊥PQ and OE⊥RS . If ∠DOE=130∘ then find ∠PDE
Open in App
Solution
Since equal chords are equidistant from the centre, we have OD = OE. ⇒∠ODE=∠OED=x ∴x+x+130∘=180∘{Angle sum property} ⇒2x=50⇒x=25∘ i.e.,∠ODE=25∘ OD⊥PQ⇒∠PDO=90∘ ∴∠PDE=∠PDO−∠ODE=90∘−25∘=65∘
Thus, ∠PDE=65∘