The correct option is
C 16√3REF.Image.
area of
ΔAOB=?from figure
PA=PB (tangent property)
and AO=OB=8 (given)
From ΔAOP and ΔBOP
OP is common side
PA=PB and AO=OB
∴ΔAOP∼ΔBOP (by sss)
Hence, ΔAOL and ΔBOL are similar.
∴AL=BL & ∠AOL=∠BOL=60o
from ΔAOB (isolate triangle)
Let ∠OAL=∠OBL be x
∴x+x+60o+∠BOL=180o
2x=180o−120o
x=30o
from ΔDBL
cos30o=BLOB=BL8
√32=BL8
BL=4√3
∴AB=2×4√3=8√3cm ...(i)
Similarly,
sin30o=OLOB=OL8
12=OL8
OL=4cm .....(ii)
from (i) and (ii)
Base of ΔAOB=8√3
Height of ΔAOB=4
Area of ΔAOB=12×base×height
=12×8√3×4
A=16√3cm2