We have,
X divides PQ in ratio1:2.
⇒XQ=2PX
⇒XQ=23PQ......(1)
Also, Y divides QR in ratio 2:1
QY=2YR
⇒QY=23QR.......(2)
In ΔPQY,
PY2=PQ2+QY2
⇒PY2=PQ2+(23QR)2
⇒PY2=PQ2+49QR2
⇒9PY2=PQ2+4QR2.......(3)
In ΔXQR,
So,
XR2=XQ2+QR2
⇒XR2=(23PQ)2+QR2
⇒XR2=4PQ29+QR2
⇒XR2=4PQ2+9QR2......(4)
On adding ( 3) and ( 4) to
9PY2+9XR2=9PQ2+4QR2+4PQ2+9QR2
⇒9(PY2+XR2)=13(PQ2+QR2)
⇒9(PY2+XR2)=13PR2
Hence, proved.