Let QS=x, then,
QT=2x
QR=3x
In ΔPQR,
PR2=PQ2+RQ2
PR2=PQ2+(3x)2
PR2=PQ2+9x2 (1)
In ΔPQT,
PT2=PQ2+TQ2
PT2=PQ2+(2x)2
PT2=PQ2+4x2 (2)
In ΔPQS,
PS2=PQ2+SQ2
PS2=PQ2+x2 (3)
Now, using equation (1) and (3),
3PR2+5PS2=3(PQ2+9x2)+5(PQ2+x2)
=3PQ2+27x2+5PQ2+5x2
=8PQ2+32x2
=8(PQ2+4x2)
From equation (2),
3PR2+5PS2=8PT2
Hence proved.