Relation between Areas and Sides of Similar Triangles
In the alongs...
Question
In the alongside diagram, ABCD is a parallelogram, then AB=2BC
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True GivenABCDisaparallelogram,AD∥BC&AB∥DC,∠CBE=∠EBA=∠1,∠DAE=∠EAB=∠2Construction−DrawEFfromEsuchthatEF=BC&EF∥BC.SoBCEFisaparallelogram.SinceEF=BC&EF∥BCsoEF=AD&EF∥AD.Now∠CBE=∠BEF=∠1{AlternateangleswhenEF∥BC,BEisthetransversal}So∠BEF=∠EBF=∠1⇒△EFBisaisoscelestriangle{Sincebaseanglesareequal}∴in△EFB,EF=FB⇒FB=BC−−−(1)Now∠FEA=∠EAD=∠2{AlternateangleswhenEF∥AD,EAisthetransversal}So∠FEA=∠EAF=∠2⇒△EABisaisoscelestriangle{Sincebaseanglesareequal}∴in△EAB,EF=AF⇒AF=BC−−−(2)Adding(1)&(2),wegetFB+AF=BC+BC⇒AB=2BC