The correct option is A 90∘
Given:
ABCD is a parallelogram
AF bisects ∠BAD
BE bisects ∠ABC
In the parallelogram ABCD,
∠A=∠C=60∘ [Opposite angles of a parallelogram]
and ∠B=∠D
Also, in a parallelogram, the adjacent angles are supplementary.
∴∠C+∠D=180∘
⇒∠D=180∘−∠C=120∘
AF and BE bisect ∠BAD and ∠ABC respectively
∴∠BAF=∠FAD=∠BAD2
=60∘2
=30∘
And,
∠ABE=∠EBC=∠ABC2
=120∘2
=60∘
And,
∠EOF=∠AOB=x∘ [Vertically opposite angles]
In ΔOAB,
∠OAB+∠OBA+∠AOB=180∘ [Angle sum property]
∴∠AOB=180∘−(∠OAB+∠OBA)
=180∘−(30∘+60∘)
∠AOB=180∘−90∘=90∘
∴x=∠AOB=90∘
[Vertically opposite angles]