CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If $$a_0$$ is the radius of the ground state orbit, m is the mass and e is the charge on the election and $$\varepsilon_0$$ is the vacuum permittivity, the speed of the electron is?


A
0
loader
B
eε0a0m
loader
C
e4πε0a0m
loader
D
4πε0a0me
loader

Solution

The correct option is B $$\displaystyle\frac{e}{\sqrt{4\pi\varepsilon_0a_0m}}$$
Centripetal force$$=\dfrac { m{ v }^{ 2 } }{ { a }_{ \circ  } } \rightarrow (1)$$
Colounbic force$$=\dfrac { 1 }{ 4\pi { \varepsilon  }_{ \circ  } } \dfrac { e.e }{ { a }^{ 2 } } \rightarrow (2)$$
$$\therefore$$ Centripetal force= Coloumbic force
$$\rightarrow \dfrac { m{ v }^{ 2 } }{ { a }_{ \circ  } } \dfrac { 1 }{ 4\pi { \varepsilon  }_{ \circ  } } \dfrac { { e }^{ 2 } }{ { { a }_{ \circ  } }^{ 2 } } \\ \rightarrow { v }^{ 2 }=\dfrac { { e }^{ 2 } }{ 4\pi { \varepsilon  }_{ \circ  }{ a }_{ \circ  }m } \\ or\quad v=\dfrac { e }{ \sqrt { 4\pi { \varepsilon  }_{ \circ  }{ a }_{ \circ  }m }  } $$

Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image