The correct option is
A True
Let P(x1,y1) be the point of contact of the tangent.
Given xayb=k(a+b)
⟹alogx+blogy=(a+b)logk
⟹ax+by.(dydx)=0
⟹dydx=–aybx
Equation of the tangent at P is
y−y1=(−ay1bx1)(x−x1) −(1)
Put y=0 in (1) , we get, x=(a+ba)x1
→A=((a+ba)x1,0)
put x=0in (1) we get , y=(a+ba)y1
thus B=(0,(a+bb)y1)
Let P divide AB in the ratio λ:1
⟹P=((a+ba)x1λ+1,λ(a+bb)y1λ+1)
Thus,
x1=(a+ba)x1λ+1,y1=λ(a+bb)y1λ+1
⟹λ+1=(a+ba),λ+1=(a+bb)
λ=baorab
Therefore P divides AB in the ratio a : b.