Given, x4−px3+qx4−rx+s=0 and let the roots be α,β,γ,δ
Case 1: Sum of two roots is equal to sum of other two, therefore α+δ=β+γ…………….(1)
α+β+γ+δ=p
⟹α+δ=β+γ=p2[from (1)]…………(2)
αβ+αγ+αδ+βγ+βδ++γδ=q
⟹(α+δ)(β+γ)+αδ+βγ=q
⟹(p2)(p2)+αδ+βγ=q[Substituting from (2)]
⟹αδ+βγ=q−14p2………….(3)
αβγ+αβδ+αγδ+βγδ=r
⟹βγ(α+δ)+αδ(β+γ)=r
⟹βγ(p2)+αδ(p2)=r[Substituting from (2)]
⟹12p(βγ+αδ)=r…………..(4)
From (3) and (4), we have
12p(q−14p2)=r
⟹p3−4pq+8r=0
Case 2: Product of two roots is equal to the product of other two, therefore αδ=βγ……………(6)
αβγ+αβδ+αγδ+βγδ=r
⟹βγ(α+δ)+αδ(β+γ)=r
⟹αδ(α+β+γ+δ)=r[∵αδ=βγfrom (6)]
⟹αδ=βγ=rp[Sum of the roots isp]
αβγδ=(rp)(rp)=s[Product of the roots iss]
⟹r2=p2s