In the expansion of (1+ax)n, the first three terms are 1+12x+64x2, then n=
16
18
20
9
(1+ax)n = 1 + nax + n(n−1)2a2x2+..........
Given nax = 12x and n(n−1)2a2x2=64x2
So n2a2x2 - na2x2 = 128 x2 ⇒ 144 x2 - na2x2 = 128 x2 ⇒ na2x2=16x2
So n = 9
The first 3 terms in the expansion of (1+ax)n (n ≠ 0) are 1, 6x and 16x2. Then the value of a and n are respectively