In the expansion of (2x2−8)(x−4)2; find
Coefficient of x3 .
(2x2−8)(x−4)2
=(2x2−8)(x2−2x(4)+42) [Since, (a−b)2=a2−2ab+b2]
=(2x2−8)(x2−8x+16)
=(2x2×x2)−(2x2×8x)+(2x2×16)−(8×x2)+(8×8x)−(8×16)
=2x4−16x3+32x2−8x2+64x−128 [Since, am×an=am+n]
=2x4−16x3+24x2+64x−128
⇒ Coefficient of x3 is −16
Hence, Option D is correct.