The correct option is D 4
Let a=x,b=√x2−1
Now,
(x+√x2−1)6=(a+b)6
=6C0a6+6C1a5b+6C2a4b2+6C3a3b3+6C4a2b4+6C5ab5+6C6b6
And (x−√x2−1)6=(a−b)6
=6C0a6−6C1a5b+6C2a4b2−6C3a3b3+6C4a2b4−6C5ab5+6C6b6
Now adding above two equations,
(a+b)6+(a−b)6=2(6C0a6+6C2a4b2+6C4a2b4+6C6b6)
Hence number of terms in the required expansion is 4