Given:
ΔABC is a right angled at A, i.e., ∠A=90∘, where BL and CM are the medians
To prove:
4(BL2+CM2)=5BC2
Proof:
Since, BL is the median,
AL=CL=12AC …… (1)
Similarly, CM is the median,
AM=MB=12AB …… (2)
We know that, by Pythagoras theorem,
(Hypotenuse)2=(Height)2+(Base)2
Therefore,
In ΔBAC,
BC2=AB2+AC2
In ΔBAL,
BL2=AB2+AL2
BL2=AB2+(AC2)2
BL2=AB2+AC24
4BL2=4AB2+AC2
In ΔMAC,
CM2=AM2+AC2
CM2=(AB2)2+AC2
CM2=AB24+AC2
4CM2=AB2+4AC2
Now,
BC2=AB2+AC2 …… (3)
4BL2=4AB2+AC2 …… (4)
4CM2=AB2+4AC2 …… (5)
Add equations (4) and (5).
4BL2+4CM2=4AB2+AC2+AB2+4AC2
4(BL2+CM2)=5AB2+5AC2
4(BL2+CM2)=5BC2
Hence, proved.