wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the fifure BL & CM are the medians of ΔABC, right angled at A. Prove that 4(BL2+CM2)=5BC2.
1068449_0f3b1cedff9045c7908588b359a98d3a.PNG

Open in App
Solution

Given:

ΔABC is a right angled at A, i.e., A=90, where BL and CM are the medians

To prove:

4(BL2+CM2)=5BC2

Proof:

Since, BL is the median,

AL=CL=12AC …… (1)

Similarly, CM is the median,

AM=MB=12AB …… (2)

We know that, by Pythagoras theorem,

(Hypotenuse)2=(Height)2+(Base)2

Therefore,

In ΔBAC,

BC2=AB2+AC2

In ΔBAL,

BL2=AB2+AL2

BL2=AB2+(AC2)2

BL2=AB2+AC24

4BL2=4AB2+AC2

In ΔMAC,

CM2=AM2+AC2

CM2=(AB2)2+AC2

CM2=AB24+AC2

4CM2=AB2+4AC2

Now,

BC2=AB2+AC2 …… (3)

4BL2=4AB2+AC2 …… (4)

4CM2=AB2+4AC2 …… (5)

Add equations (4) and (5).

4BL2+4CM2=4AB2+AC2+AB2+4AC2

4(BL2+CM2)=5AB2+5AC2

4(BL2+CM2)=5BC2

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Mid-Point Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon