In the fig. seg AB ∥ seg CD and seg AB≅seg CD prove that seg AC and seg BD bisect each other at point P.
Given: seg AB ∥ seg CD, seg AB≅seg CD
Since, seg AB∥ seg CD,
∠ABP=∠CDP [alternate angles]
In ΔAPB and ΔCPD,
∠APB=∠CPD [vertically-opposite angles]
∠ABP=∠CDP [given]
AB=DC [given]
Thus, ΔAPB≅ΔCPD [By AAS congruency]
By CPCT,
AP=CP and BP=DP
So, P is the mid-point for seg AC and seg BD.
Hence, seg AC and seg BD bisect each other at P.