In the given figure, AB>AC.If BO and CO are the bisectors of ∠B and ∠C respectively then(a) OB=OC(b) OB>OC(c) OB<OC
. O is any point in the interior of a triangle ABC. Prove that
1. AB + AC > OB + OC
2.AB + BC + CA > OA + OB + OC
3.OA + OB + OC > 1/2(AB + AC + BC)
O is any point in the interior of ΔABC.
Prove that
(i) AB+AC>OB+OC
(ii) AB+BC+CA>OA+OB+OC
(iii) OA+OB+OC>12(AB+BC+CA)