wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the figure, A and B are centres of two circles touching each other at M. Line AC and line BD are tangents. If AD=6cm and BC=9cm then the lengths of segAC and segBD are respectively
188512.jpg

A
321, 12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12,321
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
15,321
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
321, 15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12,321
GivenP&Qarethecetresoftwocirclesofradius6cm&9cmrespectively,touchingeachotheratM.ACisatangenttothebiggercircleatCandBDisatangenttothesmallercircleatD.TofindouttherespectivelengthsofsegAC&segBD=?SolutionAM=AD=6cm(radiiofthesamecircle)&BM=BC=9cm.(radiiofthesamecircle).Weknowthattheline,joiningthecentresoftwocircleswhotoucheachother,passesthroughthepointofcontactofthecircles.BothAM&BMlieonthesamelineAB.SoAB=AM+BM=(6+9)cm=15cm.Againweknowthatifalinetouchesacircleatapointthentheradiusthroughthatpointisperpendiculartothetangentatthatpoint.ADBD&BCAC.SoΔACBisarightonewithABashypotenuse.ApplyingPythagorasTheorem,wegetAC=AB2BC2=15292cm=12cm.SimilarlyΔADBisarightonewithABashypotenuse.ApplyingPythagorasTheorem,wegetBD=AB2AD2=15262cm=321cm.segAC=12cmandsegBD=321cm.AnsOptionB.
257497_188512_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Normal Line to a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon