Equation of Normal for General Equation of a Circle
In the figure...
Question
In the figure, A and B are centres of two circles touching each other at M. Line AC and line BD are tangents. If AD=6cm and BC=9cm then the lengths of segAC and segBD are respectively
A
3√21, 12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12,3√21
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
15,3√21
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3√21, 15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12,3√21 Given−P&Qarethecetresoftwocirclesofradius6cm&9cmrespectively,touchingeachotheratM.ACisatangenttothebiggercircleatCandBDisatangenttothesmallercircleatD.Tofindout−therespectivelengthsofsegAC&segBD=?Solution−AM=AD=6cm(radiiofthesamecircle)&BM=BC=9cm.(radiiofthesamecircle).Weknowthattheline,joiningthecentresoftwocircleswhotoucheachother,passesthroughthepointofcontactofthecircles.∴BothAM&BMlieonthesamelineAB.SoAB=AM+BM=(6+9)cm=15cm.Againweknowthatifalinetouchesacircleatapointthentheradiusthroughthatpointisperpendiculartothetangentatthatpoint.∴AD⊥BD&BC⊥AC.SoΔACBisarightonewithABashypotenuse.∴ApplyingPythagorasTheorem,wegetAC=√AB2−BC2=√152−92cm=12cm.SimilarlyΔADBisarightonewithABashypotenuse.∴ApplyingPythagorasTheorem,wegetBD=√AB2−AD2=√152−62cm=3√21cm.∴segAC=12cmandsegBD=3√21cm.Ans−OptionB.