∠BEC=130o,∠ECD=20o,∠BAC=?
Angle formed by arc AD are ∠ABD,∠ACD and both are equal.
∴∠ABD=∠ACB=20o {an arc in a circle subtend equal angles anywhere on the circumference}
∠ABD=20o
∠AEB+∠BEC=180o (linear pair)
∠AEB+130o=180o
∠AEB=180o−130o
∴∠AEB=50o
Now, in △BAE,
∠BAE+∠ABE+∠AEB=180o
∠BAE+20o+50o=180o
∠BAE+70o=180o
∠BAE=180o−70o
∴∠BAE=110o
But ∠BAE and ∠BAC are same
∴∠BAC=110o