In the figure, AB and CD are parallel lines and transversal EF intersects them at P and Q respectively. If ∠APR=25∘,∠RQC=30∘ and ∠CQF=65∘, then
In the figure,
(\because AB\left | \right |CD\),EF inetersects them at P and Q respectively,
∠APR=25∘,∠RQC=30∘,∠CQF=65∘
∵AB||CD
\(\therefore \angle APQ=\angle CQF (Corresponding angles)
⇒y+25∘=65∘
⇒y=65∘−25∘=40∘
and APQ+PQC=180∘
(Co -interior angles)
y+25∘+∠1+30∘=180∘
40∘+25∘+∠1+30∘=180∘
⇒∠1+95∘=180∘
∴∠1+180∘−95∘=85∘
Now ,
ΔPQR,
∠RPQ+∠PQR+∠PRQ=180∘
(Sum of angles of a triangle )
⇒40∘+x+85∘=180∘
⇒125∘+x=180∘⇒x=180∘−125∘=55∘
∴x=55∘,y=40∘