The correct option is B 8 cm
Given, OM=4 cm, AB=6 cm, ON=3 cm
ON⊥PQ,OM⊥AB
We know that,
the perpendicular from the center of a circle to a chord bisects the chord
∴BM=3 (OM⊥AB)
∠OMB=90∘
To find the length of PQ, we need to determine the radius of a circle.
Find radius using pythagorean theorem,
OM2+MB2=OB2⇒42+32=OB2⇒OB2=25⇒OB=5
Find the length of NP using Pythagorean Theorem in △ONP, we get
ON2+NP2=OP2
⇒32+NP2=52 (∵OP=OB=5)
⇒NP2=16⇒NP=4
∴PQ=NP+NQ
PQ=4+4 (∵NP=NQ)
PQ=8