The correct option is
B 80oGiven,
ABCD is a cyclic quadrilateral and
AC is its diagonal.
Also, ∠BAD=25o,∠BCD=80o
Since, ABCD is a cyclic quadrilateral.
∴∠BCD+∠BAD=180o ....(since the sum of the opposite angles of a cyclic quadrilateral is 180o)
⇒∠BAD=180o−∠BCD=180o−80o=100o.
Again, AB∥CD...[Alternate interior angles]
⇒∠BAC=∠ACD=25o.
∴∠ACB=∠BCD−∠ACD=80o−25o=55o.
Now in ΔABC,
∠ABC=180o−(∠BAC+∠BCA) ....(angle sum property of triangles)
⇒∠ABC=180o−(25o+55o)=100o
Again ABCD is a cyclic quadrilateral.
∴∠ABC+∠ADC=180o ....(since the sum of the opposite angles of a cyclic quadrilateral is 180o)
∴∠ADC=180o−∠ABC=180o−100o=80o.
Hence, option B is correct.