In the figure, ABC adn BDC are two equilateral triangles such that D is the mid point of BC. Ae intersects BC in F.
(i)ar(△BDE)=14ar(△ABC)(ii)ar(△BDE)=12ar(△BAE)(iii)ar(△BFE)=ar(△AFD)(iv)ar(△ABC)=2ar(△BEC)(v)ar(△BFE)=2ar(EFD)(vi)ar(△FED)=18ar(triangleAFC)
Given : ABC and BDE are two equilateral triangles and D is mid point of BC. Ae intersects BC in F
To Prove
(i)ar(△BDE)=14ar(△ABC)(ii)ar(△BDE)=12ar(△BAE)(iii)ar(△BFE)=ar(△AFD)(iv)ar(△ABC)=2ar(△BEC)(v)ar(△BFE)=2ar(EFD)(vi)ar(△FED)=18ar(triangleAFC)
Proof: Let AB = BC = CA = x, then BD=x2
(i) Now area of equilateral △ABC=√34(side)2=√34x2cm2
and area of equilateral △BED=√34(x2)2=√34×x24=14(√34x2)
14 (area of △ABC)
(ii) ∴△ABC=∠BED are equilateral triangle
∴∠ACB=∠DBE=60∘
But these are alternate angles
∴AB||DEar(△BAE)=2ar(△BEC)=2ar(△BDE)∵EDisamedianof△EBC)⇒ar(△BDE)=12ar(△BAE)
(iii) ∴△ABCand△BDE are equlateral triangles
∴∠ABC=60∘and∠BDE=60∘⇒∠ABC=∠BDE
But these are alternate angles
∴AB||DE∴ar(△BED)=ar(△AED)Subtractingar(△EFD)frombothsidesar(△BED)−ar(∠EFD)=ar(∠AED)−ar(∠EFD)∴ar(△BFE)=ar(△AFD)(iv)∵Edisamedianof(△BDE)⇒ar(△BEC)=2×14ar(△ABC)∵ar(△BDE)=12ar(△ABC)=12ar(△ABC)
(v) Let h be the height of vertex E, corresponding to the side BD in triangle BDE,
Let H be the height of vertex A, corresponding to the side BC in triangle ABC.
From part (i) ,
ar(△BDE)=14ar(△ABC)⇒12×BD×h=14(12×BC×H)⇒BD×=14(2BD×H)⇒h=12HFromPart(iii)ar(△BFE)=ar(△AFD)=12×FD×H=12×FD×2h=2(12×FDtimesh)=2ar(△EFD)
(vi) ar(△AFC)=ar(△AFD)+ar(△ADC)=ar(△BFE)+12ar(△ABC)
(Using part (iiii) and AD is the median of (△ABC)
=ar(△BFE)+12×4ar(△BDE)=ar(△BFE)+2ar(△BDE)Now,frompart(v),ar(△BFE)=2ar(△FED)ar(△BDE)=ar(△BFE)+ar(△FED)=2ar(△FED)+ar(△FED)=3ar(△FED)
from (ii), (iii) and (iv), we get
ar(△AFC)=2ar(△FED)+2×3ar(△FED)=8ar(△FED)