wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the figure, ABC adn BDC are two equilateral triangles such that D is the mid point of BC. Ae intersects BC in F.
(i)ar(BDE)=14ar(ABC)(ii)ar(BDE)=12ar(BAE)(iii)ar(BFE)=ar(AFD)(iv)ar(ABC)=2ar(BEC)(v)ar(BFE)=2ar(EFD)(vi)ar(FED)=18ar(triangleAFC)

Open in App
Solution

Given : ABC and BDE are two equilateral triangles and D is mid point of BC. Ae intersects BC in F
To Prove
(i)ar(BDE)=14ar(ABC)(ii)ar(BDE)=12ar(BAE)(iii)ar(BFE)=ar(AFD)(iv)ar(ABC)=2ar(BEC)(v)ar(BFE)=2ar(EFD)(vi)ar(FED)=18ar(triangleAFC)
Proof: Let AB = BC = CA = x, then BD=x2
(i) Now area of equilateral ABC=34(side)2=34x2cm2
and area of equilateral BED=34(x2)2=34×x24=14(34x2)
14 (area of ABC)
(ii) ABC=BED are equilateral triangle
ACB=DBE=60
But these are alternate angles
AB||DEar(BAE)=2ar(BEC)=2ar(BDE)EDisamedianofEBC)ar(BDE)=12ar(BAE)
(iii) ABCandBDE are equlateral triangles
ABC=60andBDE=60ABC=BDE
But these are alternate angles
AB||DEar(BED)=ar(AED)Subtractingar(EFD)frombothsidesar(BED)ar(EFD)=ar(AED)ar(EFD)ar(BFE)=ar(AFD)(iv)Edisamedianof(BDE)ar(BEC)=2×14ar(ABC)ar(BDE)=12ar(ABC)=12ar(ABC)
(v) Let h be the height of vertex E, corresponding to the side BD in triangle BDE,
Let H be the height of vertex A, corresponding to the side BC in triangle ABC.
From part (i) ,
ar(BDE)=14ar(ABC)12×BD×h=14(12×BC×H)BD×=14(2BD×H)h=12HFromPart(iii)ar(BFE)=ar(AFD)=12×FD×H=12×FD×2h=2(12×FDtimesh)=2ar(EFD)
(vi) ar(AFC)=ar(AFD)+ar(ADC)=ar(BFE)+12ar(ABC)
(Using part (iiii) and AD is the median of (ABC)
=ar(BFE)+12×4ar(BDE)=ar(BFE)+2ar(BDE)Now,frompart(v),ar(BFE)=2ar(FED)ar(BDE)=ar(BFE)+ar(FED)=2ar(FED)+ar(FED)=3ar(FED)
from (ii), (iii) and (iv), we get
ar(AFC)=2ar(FED)+2×3ar(FED)=8ar(FED)


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon