In the figure, ABCD and AEFD are two parallelograms. Prove that
(i)PE=FQ(ii)ar(△APE):ar(△PFA)=ar(△QFD):ar(△PFD)(iii)ar(△PEA)=ar(△QFD).
Given: Two ||gm ABCD and ||gm AEFD are on the same base AD. EF is produced to meet CD at Q. JD AF and PD and PD also
To Prove:
(i)PE=FQ(ii)ar(△APE):ar(△PFA)=ar(△QFD):ar(△PFD)(iii)ar(△PEA)=ar(△QFD).
Proof:
(i) In △AEPandDFQ,
AE = DF ( Opposite sides of a ||gm)
∠AEP=∠DFQ (Corresponding angles)
∠APE=∠DQF (Corresponding angles)
∴△AEP≅△DFQ∴PE=QF
(ii) and ar(△AEP)=ar(△DFQ)
(iii) ∵△PFAand△PFD are on teh same base PF and between the same parallels
∴ar(△PFA)=ar(△PFD)
From (i) and (ii) ,
ar(△AEP)ar(△PFA)=ar(△DFQ)ar(△PFD)