In the figure, ABCD is a ||gm . O is any point on AC. PQ || AB and LM || AD. Prove that ar (||gm DLOP) = ar(||gm BMOQ).
Given : In || gm ABCD, O is any point on Diagonal AC. PQ || AB and LM || BC
To Prove : ar (|| gm DLOP ) = ar(||gm BMOQ)
Proof : ∵ Since a diagonal of a parallelogram divides it into two triangles of equal area.
∴ar(△ADc)=ar(△ABC)⇒ar(△APO)+ar(||gmDLOP)+ar(△OLC)=ar(△AOM)+ar(||gmBMOQ)+ar(△OQC)
Since, AO and OC are diagonals of parallelograms AMOP and OQCL respectively,
∴ar(△APO)=ar(△AMO)
and ar(△OLC)=ar(△OQC)
∴ar(||gmDLOP)=ar(||gmBMOQ)