∠ADE=90∘+60∘=150∘
∠BCE=90∘+60∘=150∘
In △ADE and △BCE
AD=BC(side of a square)
DE=CE(side of an equilateral triangle)
∠ADE=∠BCE
∴△ADE≅△BCE by SAS rule
∴AE=BE by CPCT
In △ADE
AD=DE since AD=DC=DE
⇒∠1=∠2
But ∠1+∠2+∠ADE=180∘ by angle sum property of △
∠1+∠2+150∘=180∘
⇒∠1+∠2=180∘−150∘=30∘
∠1=∠2
⇒2∠1=2∠2=30∘
⇒∠1=∠2=30∘2=15∘
∴∠DAE=15∘