The correct option is
B AC2+AB2From the triangle,
AD is the median of the triangles
⇒CD=BD=BC2...(i)
By Pythagoras Theorem, △AMC
AC2=CM2+AM2...(ii)
In △ABM, AB2=BM2+AM2...(iii)
In △AMD, AD2=DM2+AM2...(iii)
⇒AM2=AD2−DM2...(iv)
⇒ Substitute (iv) in (ii)
AC2=CM2+AD2−DM2
∴AC2=(CD+DM)2+AD2−DM2
AC2=(BC2+DM)2+AD2−DM2
=BC22+BC×DM+AD2+DM2−DM
AC2=BC22+BC×DM+AD2....(v)
⇒ Substitute (iv) in (iii)
AB2=BM2+AD2−DM2
⇒AB2=(BD−DM)2+AD2−DM2
=(BC2−DM)+AD2−DM2
BC24−BC×DM+AD2+DM2−DM2
⇒AB2=BC24−BC×DM+AD2...(vi)
Adding (v) and (vi)
AB2+AC2=BC24+AD2−BC×DM+BC24+BC×DM+AD2
⇒AB2+AC2=BC22+2AD2