In the figure, AM ⊥ BC and AN is the bisector of ∠A. If ∠B=65∘ and ∠C=33∘, find ∠MAN.
In ΔABC,∠B=65∘,∠C=33∘
AM⊥ BC and AN is bisector of ∠A
∵AM⊥BC
∴∠AMC=90∘
⇒∠AMN=90∘
In ΔABC,
∠A+∠B+∠C=180∘
(Sum fo angles of a triangle)
⇒∠A+65∘+33∘=180∘
⇒∠A+98∘=180∘
⇒∠A=180∘−98∘=82∘
∵ AN the bisector of ∠A
∴∠NAC=∠NAB=12∠A=12×82∘=41∘
InΔANC,
Ext. ∠ANM=∠C+∠NAC
=33∘+41∘=74∘
In ΔMAN,
∠MAN+∠AMN+∠ANM=180∘
(Angles of a triangle)
⇒∠MAN+90∘+74∘=180∘
⇒∠MAN+164∘=180∘
⇒∠MAN=180∘−164∘=16∘
Hence, ∠MAN=16∘