In the figure, ∠ADC=130∘ and chord BC= chord BE. Find ∠CBE
We have, ∠ADC=130∘ and BC=BE.
Consider the points A, B, C and D form a cyclic quadrilateral.
We know that the sum of opposite angles of a cyclic quadrilateral is 180∘.
∴ ∠ADC+∠OBC=180∘
⇒ 130∘+∠OBC=180∘
⇒ ∠OBC=180∘−130∘=50∘
In ΔBOC and ΔBOE
BC=BE [given equal chords]
OC=OE [radii of a circle]
OB=OB [common]
∴ ΔBOC≅ΔBOE [by SSS congruence rule]
⇒ ∠OBC=∠OBE=50∘ [by CPCT]
Now, ∠EBO=∠CBO=50∘
∠CBE=∠CBO+∠EBO
=50∘+50∘=100∘