We have, ∠ADC = 130∘ and BC = BE.
Consider the points A, B, C and D form a cyclic quadrilateral.
We know that the sum of opposite angles of a cyclic quadrilateral is 180∘.
∴ ∠ADC+∠OBC=180∘
⇒ 130∘+∠OBC=180∘
⇒ ∠OBC=180∘−130∘=50∘
In ΔBOC and ΔBOE
BC = BE [given equal chords]
OC = OE [radii of a circle]
OB = OB [common]
∴ ΔOC≅ΔBOE [by SSS congruence rule]
⇒ ∠OBC=∠OBE=50∘ [by CPCT]
Now, ∠CBE=∠CBO=50∘
∠CBE=∠CBO+∠EBO
=50∘+50∘=100∘