In the figure ∠B=90∘, D and E trisect BC, Prove that 8AE2=3AC2+5AD2 [4 MARKS]
Concept: 1 Mark
Application: 1 Mark
Proof : 2 Marks
Since D and E are the points of trisection of BC. Therefore,
BD = DE = CE.
Let BD = DE = CE = x.
Then, BE = 2x and BC = 3x.
In right triangles ABD, ABE and ABC, we have
⇒AD2=AB2+BD2
⇒AD2=AB2+x2……(1)
AE2=AB2+BE2
⇒AE2=AB2+4X2……(2)
and, AC2=AB2+BC2
⇒AC2=AB2+9X2……(3)
Now consider,
8AE2−3AC2−5AD2
=8(AB2+4x2)−3(AB2+9x2)−5(AB2+x2)
=8AB2+32x2−3AB2−27x2−5AB2−5x2
=8AB2+32x2−8AB2−32x2=0
⇒8AE2−3AC2−5AD2=0
⇒8AE2=3AC2+5AD2