The correct option is D 16(1+√3)
Given: PQ bisects ∠PQR, AB⊥BQ, AC⊥QR
In △BCQ
BCQC=tan(∠BQC)
BCQC=tan30 (BQ bisects ∠BQC)
QC=BCtan30
QC=8√3
Now,In △QAB and △QBC,
BQ=BQ (Common)
∠BQA=∠BQC (BQ bisects ∠Q)
∠BAQ=∠BCQ (Each 90∘)
Thus, △QAB≅△QCB (ASA rule)
hence, AB=BC=8 cm (Corresponding sides)
AQ=CQ=8√3 cm (Corresponding sides)
Thus, Perimeter of □ABCQ = AB+BC+CQ+AQ
Perimeter of □ABCQ = 8+8+8√3+8√3
Perimeter of □ABCQ = 16(1+√3) cm