Given that:
∠QXR=25∘,∠QRX=33∘
To find:
∠XYZ=?
∠PZQ=?
Solution:
In △XQR
∠XQR+∠QXR+∠QRX=180∘
or, ∠XQR+25∘+33∘=180∘
or, ∠XQR=122∘
Now,
∠PQX+∠XQR=180∘ (Linear pair)
or, ∠PQX=180∘−122∘=58∘
∠PQX=∠XYZ (Angles in the same segment are equal.)
or, ∠XYZ=∠PQX=58∘
Now,
∠PZX=2∠XYZ (Angle subtended by an arc at the centre is twice of the angle subtended by it at any point on the circle.)
or, ∠PZX=2×58∘=116∘
∠PZX+∠PZQ=180∘ (Linear pair)
or, ∠PZQ=180∘−116∘=64∘