In the figure below, if ΔABC is an isosceles triangle and OB and OC are angle bisectors, then ∠BOC=
90∘+(∠A2)
In ΔABC, ∠ABC=∠ACB
So, (∠ABC)2=(∠ACB)2
∠BOC=∠BCO
Therefore, ΔBOC is also isosceles.
Also, ∠A+∠ABC+∠ACB=180∘
Let ∠ABC=∠ACB=x
So, ∠A+x+x=180∘
2x=180∘−∠A
X=180∘−∠A2
x=90∘−(∠A2)……(i)
∠OBC=∠OCB=x2
So, ∠OBC+∠OCB=x
∠BOC=180∘−(∠OBC+∠OCB)
=180∘−x
=180∘−[90∘−(∠A2)] ....... (using (i))
=180∘−90∘+(∠A2)
=90∘+(∠A2)